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Introduction

The latest Permian mass extinction event, just preced-
ing the Permian–Triassic boundary (PTB), was the se-
verest mass extinction in Earth history. Approximately
90 % of all marine and 75 % of land species (e.g., Er-
win 1994) became extinct, but many of these taxa re-
appeared as Lazarus taxa or successor taxa that are clo-
sely related to their Late Permian ancestors during the
Anisian and Ladinian (Kozur 1998a, 1998b; see also
Chen & Benton 2012). The crisis, caused by dramatic
changes in environmental conditions, lasted several mil-
lion years (Erwin 1993, 2006; Retallack 1995) and was

accompanied by significant disruptions in the global
carbon cycle. This disruption affected marine, terres-
trial and atmospheric reservoirs and is indicated by a
prominent negative carbon isotope excursion (e.g.,
Chen et al. 1984; Holser et al. 1989; Krull et al. 2000;
Twitchett et al. 2001; Korte et al. 2004a, 2010; Retal-
lack et al. 2005; Algeo et al. 2007; Yin et al. 2007;
Heydari et al. 2008). Because of its global extent, the
PTB carbon isotope trends are well suited for world-
wide stratigraphic correlation (e.g., Baud et al. 1989;
Korte & Kozur 2005a, 2005b, 2010; Gorjan et al. 2008;
Grasby & Beauchamp 2008; Cao et al. 2010; Hermann
et al. 2010; Richoz et al. 2010). A number of causes
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Abstract

The latest Permian mass extinction, the most severe Phanerozoic biotic crisis, is
marked by dramatic changes in palaeoenvironments. These changes significantly dis-
rupted the global carbon cycle, reflected by a prominent and well known negative
carbon isotope excursion recorded in marine and continental sediments. Carbon iso-
tope trends of bulk carbonate and bulk organic matter in marine deposits of the Eu-
ropean Southern Alps near the low-latitude marine event horizon deviate from each
other. A positive excursion of several permil in d13Corg starts earlier and is much
more pronounced than the short-term positive d13Ccarb excursion; both excursions in-
terrupt the general negative trend. Throughout the entire period investigated, d13Corg

values become lighter with increasing distance from the palaeocoastline. Changing
d13Corg values may be due to the influx of comparatively isotopically heavy land
plant material. The stronger influence of land plant material on the d13Corg during
the positive isotope excursion indicates a temporarily enhanced continental runoff that
may either reflect increased precipitation, possibly triggered by aerosols originating
from Siberian Trap volcanism, or indicate higher erosion rate in the face of reduced
land vegetation cover.
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have been proposed to account for the negative carbon
isotope excursion: (1) enhanced combustion or meta-
morphism of organic matter in latest Precambrian and
Palaeozoic organic-rich sediments by Siberian Trap
sills and dykes (e.g., Payne & Kump 2007; Retallack
& Jahren 2008; Svensen et al. 2009; Korte et al.
2010), (2) a global sea level drop enabling the erosion
of 13C-depleted organic-rich sediments (e.g., Holser &
Magaritz 1987; Baud et al. 1989), (3) a collapse of
oceanic primary productivity (e.g., Magaritz 1989;
Visscher et al. 1996), (4) the release of methane from
the sea floor, permafrost soils, or coal deposits (e.g.,
Erwin 1994; Krull & Retallack 2000; Heydari et al.
2008), or (5) anoxic bottom waters reaching ocean
surfaces by rise of the chemocline or oceanic overturn
(e.g., Malkowski et al. 1989; Knoll et al. 1996; Kump
et al. 2005; Riccardi et al. 2007; Algeo et al. 2008).
Not surprisingly, the PTB carbon isotope trend may
also have been caused by a combination of several of
these factors (e.g., Berner 2002; Sephton et al. 2005;
Corsetti et al. 2005; Retallack & Jahren 2008; Korte
et al. 2010).

The negative carbon isotope excursion at the PTB is
superimposed by additional positive and negative d13C
events (e.g., Korte et al. 2004b, 2004c; Richoz 2006;
Algeo et al. 2007, 2008; Kraus et al. 2009; Cao et al.
2010; Korte & Kozur 2010; Korte et al. 2010; Richoz
et al. 2010; Takahashi et al. 2010; Shen et al. 2012a,
2012b, 2012c). A characteristic, abrupt, � 1 ‰ positive
d13C excursion, interrupting the general latest Permian
negative trend, occurs just before the low-latitude
marine event (mass extinction) horizon (Korte et al.
2004b, 2004c; Richoz 2006; Kraus et al. 2009; Cao
et al. 2010; Korte & Kozur 2010; Korte et al. 2010;
Richoz et al. 2010; Takahashi et al. 2010). This posi-
tive excursion has recently drawn attention, and
authors argued that it might have been caused by en-
hanced nutrient availability, producing an algal and/or
bacterial bloom (Payne & Kump 2007; Korte et al.
2010; Takahashi et al. 2010), deposition of coaly fly
ash from Trap volcanism (Grasby et al. 2011), or en-
hanced terrestrial influx due to climatic perturbations
(Krassilov & Karasev 2009; Takahashi et al. 2010;

Siegert et al. 2011; see also Wacey et al. 2007). In
this publication, we present new organic and inorganic
carbon isotope data from two low-latitude marine
PTB sections in the European Southern Alps and
compare them to literature data from other succes-
sions of this region. We examine the extent of a po-
tential terrestrial influence as a function of distance
from the palaeocoast, thus constraining nature and ex-
tent of the latest-Permian environmental perturbations
and its influence on the biotic crisis.

Sections studied

Samples were collected from the PTB sections at Mis-
ci (Bosellini 1964; this locality was also named “Val
Badia”, Sephton et al. 2002, and “Val Seres”; Cirilli
et al. 1998) and San Antonio (Brandner 1988; Ober-
h�nsli et al. 1989), both located in the Dolomites
(Southern Alps, Italy; Fig. 1). Misci is situated near
Campill/Lungiar�/Longiar� (Bosellini 1964; Cirilli
et al. 1998), a few kilometres south-southwest of St.
Martin in Thurn in the Val Badia (South Tyrol). The
section is exposed about 600 m west-northwest of the
Misci settlement, north of the Rio Seres (see also Cir-
illi et al. 1998; Sephton et al. 2002). The studied pro-
file (46�3802300 N; 11�5003500 E) comprises the upper
part of the Bellerophon Formation (the designation
“Formazione a Bellerophon” was accepted by the
APAT-CNR-Commissione Italiana di Stratigrafia) and
the lower part of the Werfen Formation, the latter
consisting of the Tesero Oolite Horizon (TOH) (oolitic
grainstones) and the lower Mazzin Member (Fig. 2).
The strata were deposited about 40 km east of palaeo-
coastline (Fig. 1; see Brandner 1988).

The San Antonio section is located along a road cut
on the road from Auronzo di Cadore to San Antonio
(Fig. 1; see Brandner 1988). Here, the Bellerophon For-
mation is directly succeeded by the Mazzin Member;
the TOH is absent (Fig. 3). This location is about
90 km east of the palaeocoastline (Fig. 1; Brandner
1988). The base of the section (Bellerophon Formation)
is composed of thick-bedded wackestone and mudstone
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Figure 1. Geographical sketch map of
the Southern Alps showing sample lo-
calities (blue) and other sections dis-
cussed in text (yellow). The palaeo-
coastline of the Bellerophon basin was
situated about 10 km west of Bozen/
Bolzano. Figure modified after Brand-
ner (1988) and Kraus et al. (2009).
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alternating with beds of thin platy marls. The Bulla
Member, starting at about 1 m of the measured strati-
graphic section, consists of dolomitic mudstone, inter-
bedded with packstone and marl. The Mazzin Member
consists of mudstone interbedded with thin-bedded marl
(Fig. 3). The sedimentation rate at the San Antonio suc-

cession was lower than at Misci, probably because of
its more distal location (Brandner 1988).

Sedimentological observations and the palaeogeogra-
phical reconstruction indicate shallower water depths
towards the west (Fig. 1; see also Brandner 1988;
Brandner et al. 2009).
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Figure 2. Stratigraphy, lithology, carbon isotope values, and TOC concentrations of the Misci section. Outcrop photographs illus-
trate outcrop conditions, thin sections of selected samples show characteristic petrographic composition. A negative (N1) and a
positive (P) d13C excursion modify the general negative d13C trend which leads up to the PTB, located near the minimum N2; cf.
Korte & Kozur (2010).
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Methods

Thin sections of carbonates from the Bellerophon Formation and the
TOH at Misci and from the Bellerophon Formation and the Mazzin
Member at San Antonio (Figs 2, 3) aided in the identification of rock
types and microfacies (see below).

About 1.5 g of powder was drilled from 39 and 33 fresh surfaces
of cleaned marly or micritic carbonate rock samples from Misci and
San Antonio, respectively. Drilling was restricted to 5 seconds to
avoid unwanted heating. Small portions (100–400 mg) of the pro-

duced powders were filled into 10 ml vials and sealed with septum
caps. The vials were then flushed with helium for 6 min; subsequently
H3PO4 was added. Generated CO2 was analysed for d13Ccarb and d18O
on a Thermo Finnigan Gasbench II linked online to a Thermo Finni-
gan Delta V mass spectrometer at the Museum f�r Naturkunde Berlin.
The reproducibility of replicated standards was better than 0.1 ‰
(one standard deviation) for both d13C and d18O. Carbon- (and oxy-
gen)-isotope values were calibrated against V-PDB and are reported
in conventional delta notation (Tab. 1). The remaining sample pow-
ders were de-carbonated with 2 M hydrochloric acid following Siegert
et al. (2011). About 40 mg and 50 mg of the treated and dried sam-
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Table 1. Stratigraphic sample location, carbon isotope and TOC values at the Misci section.

Sample height (m) d13Ccarb

[%�] vs. VPDB

d13Corg

[%�] vs. VPDB

TOC [%]

(decarbonised sample)

TOC [%]

(sample)

Ser 1 0.15 2.42 �25.07 1.02 0.07

Ser 2 1.15 2.89 �26.39 1.64 0.02

Ser 3 3.65 2.48 �26.30 2.01 0.07

Ser 4 4.35 3.17 �26.30 2.80 0.04

Ser 5 5.55 3.21 �24.93 1.16 0.04

Ser 6 6.75 3.53 �24.67 1.24 0.05

Ser 7 7.55 3.57 �25.67 1.40 0.04

Ser 8 7.95 3.86 �25.96 6.88 0.02

Ser 9 8.45 2.64 �28.31 9.47 0.08

Ser 10 8.95 3.13 �29.91 24.75 0.20

Ser 11 9.22 2.73 �29.75 10.45 0.06

Ser 12 9.3 1.42 �28.47 3.81 0.02

Ser 13 9.48 0.74 �29.07 0.98 0.02

Ser 14 9.57 1.16 �27.30 0.72 0.02

Ser 15 9.75 1.02 �27.68 0.85 0.02

Ser 16 9.91 1.02 �26.23 0.47 0.01

Ser 17 10 0.79 �28.07 16.14 0.12

Ser 18 10.29 1.01 �26.51 0.97 0.00

Ser 19 10.38 1.03 �28.80 0.62 0.01

Ser 20 10.565 �26.34 0.33 0.03

Ser 21 10.813 1.19 �28.91 0.55 0.02

Ser 22 10.975 0.88 �28.66 0.37 0.02

Ser 23 11.095 0.94 �28.57 0.36 0.02

Ser 24 11.335 0.37 �30.05 0.52 0.02

Ser 25 11.435 0.47 �29.27 0.41 0.01

Ser 26 11.8 0.20 �29.60 0.48 0.01

Ser 27 12.055 0.46 �30.03 0.47 0.02

Ser 28 12.6 0.39 �27.67 0.67 0.01

Ser 29 13.195 �0.09 �29.58 0.40 0.01

Ser 30 13.57 0.09 �29.33 0.49 0.01

Ser 31 13.8 �0.25 �28.93 1.25 0.02

Ser 32 14.32 �0.30 �28.89 0.42 0.02

Ser 33 14.51 �0.54 �29.12 0.42 0.02

Ser 34 14.88 �0.32 �29.48 0.17 0.01

Ser 35 19.15 �2.33 �29.76 0.22 0.04

Ser 36 19.65 �2.22 �30.85 0.25 0.05

Ser 37 21.69 �3.74 �32.56 0.51 0.11

Ser 38 21.99 �1.87 �30.79 0.35 0.04

Ser 39 23.39 �1.61 �30.84 0.39 0.03
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Figure 3. Stratigraphy, lithology, carbon isotope values and TOC concentrations of San Antonio section. Outcrop photographs illus-
trate outcrop conditions, thin sections of selected samples show characteristic petrographic composition. (See Figure 2 for N1 and P).
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ples from Misci and San Antonio, respectively, were subsequently
packed into tin capsules. d13Corg and total organic carbon (TOC) was
then measured using a THERMO/Finnigan MAT V isotope ratio mass
spectrometer, coupled to a THERMO Flash EA 1112 elemental analy-
zer via a THERMO/Finnigan Conflo III-interface at the stable isotope
laboratory of the Museum f�r Naturkunde Berlin (Tab. 1). The organic
carbon isotope ratios were expressed in the standard ‰ notation rela-
tive to VPDB. The standard deviation for repeated measurements
of lab standard material (peptone) was better than 0.15 ‰
(error ¼ � 0.2).

Results

Field and thin section observations demonstrate that the
fine- to coarse-grained packstones to grainstones are
generally strongly bioturbated and of variable frame-
work composition. They likely reflect the thorough

mixing of products by several carbonate grain “fac-
tories” and suggest water depths of several tens of
metres. The lower 9 m of the Misci section consist of
partly marly carbonates of the Bellerophon Formation.
Cavernous carbonates, presumably produced by second-
ary dissolution of evaporitic minerals, occur between
1–2 and 4–8 m (Fig. 2). Spherical structures inter-
preted as ooids or calcispheres occur at 4 m (sample
Ser-4); they are absent in samples Ser-5, Ser-6, Ser-21
and Ser-23. No ooids were identified in the outcrop nor
in thin sections from San Antonio (Fig. 3); the domi-
nant rock types there are foraminifer-mollusk biosparite
(SAn-118) and fossil-free micritic mudstone (SAn-121).

d13Ccarb values from the PTB section at Misci
(Fig. 2) vary from þ 3.9 ‰ in the upper Bellerophon
Formation to þ 3.7 ‰ in the Mazzin Member. The
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Table 2: Sample location, carbon isotope and TOC values at the San Antonio section.

sample height

(m)

d13Ccarb

[%�] vs. VPDB

d13Corg

[%�] vs. VPDB

TOC [%]

(decarbonised sample)

TOC [%]

(sample)

SAn 101 �0.19 2.98 �24.90 0.89 0.04

SAn 102 �0.07 2.65 �24.92 0.64 0.12

SAn 103 0.00 2.46 �25.27 0.74 0.12

SAn 104 0.07 2.38 �24.76 0.65 0.12

SAn 105 0.68 2.72 �23.50 0.78 0.11

SAn 106 0.83 2.63 �23.74 0.61 0.09

SAn 106b 0.90 2.66 �24.66 0.61 0.12

SAn 107 1.00 2.64 �25.11 0.55 0.08

SAn 108 1.10 2.40 �24.84 1.22 0.01

SAn 109 1.43 2.19 �25.15 0.76 0.16

SAn 110 1.81 2.67 �25.10 1.03 0.08

SAn 111 2.16 2.66 �26.99 1.35 0.05

SAn 112 2.47 3.27 �28.54 2.65 0.04

SAn 112a 2.65 2.87 �28.87 3.26 0.04

SAn 113 2.81 3.08 �29.68 5.74 0.02

SAn 114 2.94 2.80 �31.04 12.06 0.01

SAn 115 3.04 2.45 �30.97 5.51 0.01

SAn 116 3.09 2.28 �29.07 5.92 0.01

SAn 117 3.23 2.29 �29.14 1.71 0.01

SAn 118 3.31 1.94 �29.41 0.85 0.03

SAn 118a 3.36 0.87 �30.25 0.78 0.03

SAn 119 3.43 0.97 �28.92 0.13 0.22

SAn 120 3.50 0.94 �29.60 0.19 0.12

SAn 121 3.64 0.65 �27.89 0.17 0.09

SAn 122 3.74 1.09 �28.43 0.19 0.05

SAn 123 3.92 1.01 �30.62 0.31 0.06

SAn 124 4.09 0.70 �29.45 0.28 0.06

SAn 125 4.45 0.42 �27.90 0.12 0.21

SAn 126 4.56 0.65 �29.36 0.37 0.02

SAn 127 4.80 0.42 �29.83 0.47 0.05

SAn 128 5.50 0.67 �28.85 0.37 0.03

SAn 129 6.10 0.60 �29.12 0.46 0.02

SAn 130 6.60 0.59 �30.45 0.52 0.04
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variability in the upper Bellerophon Formation is rela-
tively low (þ 2.4 to þ 3.9 ‰); this is also characteris-
tic for other time-equivalent South Alpine and Tethyan
sections (e.g., Baud et al. 1989; Holser et al. 1989;
Korte & Kozur 2010). The values decrease sharply
from þ 2.7 ‰ (Ser-11) to þ 0.7 ‰ (Ser-13) in the
lower TOH (Fig. 2: N1) and then remain relatively con-
stant at about 1 ‰. A positive excursion in the general
decreasing trend starts in the middle part of the TOH
(Ser-17) and ends near its top (Ser-26) (Fig. 2: P). Sub-
sequently, the carbonate carbon isotope values decrease
gradually from þ 0.5 ‰ (Ser-27) and reach a mini-
mum of � 3.7 ‰ in the Mazzin Member (Ser-37). The
d13C values of Ser-38 and Ser-39, in the highest part of
the section, are between � 1.5 and � 2.0 ‰.

The d13Corg values from Misci vary between � 24.7
and � 32.6 ‰. The variability in the upper Bellerophon
Formation is low and ranges between � 26.3 and
� 24.6 ‰. A decreasing trend starts about 1 m below
the TOH within the Bulla Member and reaches –
29.9 ‰ at its top. The organic-carbon isotope values in-
crease significantly from Ser-11 – exactly where carbo-
nate d13C values start to decrease (Fig. 2; Tab. 1) – and
create a positive excursion until the top of the TOH
(Ser-24). Higher up, the d13Corg values remain – with
some exceptions – relatively constant. They show, as
does d13Ccarb, a minimum in sample Ser-37 of 32.6 ‰.

d13Ccarb values from the 7.5 m thick PTB carbonate
sequence at San Antonio (Fig. 3) vary from þ 3.3 ‰
(Bulla Member) to þ 0.4 ‰ (Mazzin Member). This
range is distinctly smaller than at Misci (8 ‰), con-
firming earlier observations of higher carbonate carbon
isotope variability for shallower sections (and high lati-
tudes) (Krull et al. 2000; Twitchett et al. 2001; Korte
et al. 2010). At San Antonio, variability in the upper
Bellerophon Formation is between þ 2.2 and þ 3.3 ‰.
Values begin to decrease at sample SAn-114 and fall
gradually from about þ 2.3 to about þ 0.9 ‰ until
reaching the boundary between the Bellerophon For-
mation and the Werfen Formation (Figs 3, 4: N1),
which is similar to the Misci record. A small positive
excursion (Figs 3 and 4: P) of nearly 0.7 ‰ occurs
between sample SAn-121 and SAn-125. The d13Ccarb

values remain at about þ 0.6 ‰ up to the top of the
section.

d13Corg values from the San Antonio section vary –
similar to those from Misci – by � 7.5 ‰. They de-
crease – in contrast to the d13Ccarb – already in the lower
Bulla Member (SAn-110), about 1.5 m below the bound-
ary between the Bellerophon and the Werfen Formations.
This decline is gradual and ranges from � 24.6 to
� 31.0 ‰. Subsequently and in the upper Bulla Member,
the organic carbon isotopes show a two-peaked positive
excursion with maxima of � 27.9 ‰ in samples SAn-
121 and SAn-125. Stratigraphically higher, the d13Corg

values vary between � 30.4 to � 29.4 ‰.
TOC concentrations of organic matter of the Misci

and San Antonio samples are low, averaging 0.04 %
and 0.07 %, respectively. These low concentrations are

typical for platform carbonates. The d13Corg values
must thus be interpreted with caution where they fall
below 0.02 % (Magaritz et al. 1992). Slightly higher
TOC values of up to 0.2 % are present in the thin-
bedded marl.

Discussion

Carbon isotope fluctuations, if global in nature, are re-
corded across a broad range of marine and continental
sediments such as shallow-water and pelagic carbo-
nates, organic-rich shales, palaeosols and lacustrine de-
posits. Thus, maxima and minima in isotope variations
are useful tools for intercontinental stratigraphic corre-
lations and have been applied to the prominent negative
carbon isotope excursion at the PTB (e.g., Baud et al.
1989; Korte & Kozur 2005a, 2010; Gorjan et al. 2008;
Grasby & Beauchamp 2008; Cao et al. 2010; Hermann
et al. 2010; Korte et al. 2010; Richoz et al. 2010). Re-
cently, Korte & Kozur (2010) have suggested a general
carbonate carbon isotope trend for the PTB, calibrated
by biostratigraphically well-defined sections. Their sug-
gested trend, used here as a baseline in the following
discussion, shows four characteristics: (1) A gradual
4 ‰ to 7 ‰ decline, beginning in the Clarkina bach-
manni Zone, and lasting about 500,000 years; (2) A
short-term, about 1 ‰ positive excursion, starting just
below the low-latitude marine event horizon and inter-
rupting the general negative trend (P in Fig. 4); (3) A
first minimum (N2 in Figure 4) situated close to the
PTB at the first-appearance-datum (FAD) of Hindeodus
parvus (Kozur & Pjatakova, 1976); (4) A second, occa-
sionally two-peaked minimum in the lower and middle
Isarcicella isarcica Zone which occurs after a slight in-
crease.

We include in the following discussion published car-
bonate and organic carbon isotope data for the PTB
succession in Seis/Siusi (Kraus et al. 2009; Siegert
et al. 2011; Figs 1, 4) for comparison (see also Horacek
et al. 2010). In general, it is difficult to biostratigraphi-
cally define precisely the PTB in the Southern Alps be-
cause the sediments are rare in conodonts. No conodont
data exist at Seis, Misci, and San Antonio; thus, other
stratigraphic tools must be applied. The conodont Hin-
deodus, however, is reported from the Southern Alps at
the Reppwand (Gartnerkofel core) and Pufels/Bula/Bul-
la (Sch�nlaub 1991; Perri 1991; Farabegoli & Perri
1998), allowing the definition of the PTB and its corre-
lation to the carbon isotope curve (see Korte & Kozur
2010; Korte et al. 2010). This definition has been used
to suggest the possible location of the stratigraphic hor-
izon of the PTB at Seis (Kraus et al. 2009; Siegert et al.
2011) which can be applied for Misci, too. Following
this line of reasoning, the biostratigraphic (conodont-
defined) PTB in this section is drawn at the carbonate
carbon isotope minimum (cf. Korte & Kozur 2010),
about 11.5 m above the base of the TOH (Fig. 2: N2).
This location is nearly identical to its location in the
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d13Ccarb isotope curve at the adjacent Pufels section
(Korte et al. 2010), where the PTB is interpreted to oc-
cur about 12 meters above the base of the TOH. This
suggested correlation is also supported by the proximity
of the Pufels and Misci sections, suggesting similar se-
dimentation rates in both sections. A distinct d13C
minimum is not present in the carbonate carbon isotope
curve above the base of the Mazzin Member in San
Antonio (Fig. 3), suggesting that the biostratigraphic
(conodont) PTB might not be present in the investi-
gated part of this section, and may occur upsection if
the succession is complete.

The gradual decreasing carbonate carbon isotope
trend in all three sections is interrupted by a (slightly
pronounced) 0.5 to 1 ‰ short-term positive excursion
(Figs 2, 3) which occurs in Misci between Ser-17 and
Ser-26 and in San Antonio between SAn-121 and SAn-
125 (see also Kraus et al. 2009, for Seis). These short-
term positive d13C shifts represent a chemostratigraphic
marker which occurs somewhat below the low-latitude
marine event horizon (cf. Kraus et al. 2009; Korte &
Kozur 2010; Richoz et al. 2010). Palynological data
from Misci (Cirilli et al. 1998) indicate that the event
horizon (EH) occurs slightly above their sample S80
(indicated in Figure 4). Our field observations, how-
ever, suggest that the EH is located at sample Ser-17.
In the San Antonio section (see also Brandner 1988),
the EH is located at the base of the thin-bedded marl-
stone (above SAn 118a), indicated by a change from
mollusc-foram biosparite to micritic limestone (mud-
stone). Because of the strong shifts in d13Ccarb and
TOC (Fig. 2) at this position, a short hiatus cannot be
excluded there. Further details regarding stratigraphic
correlation at the PTB in the Southern Alps are de-
scribed by Assereto et al. (1973), Mostler (1982), No�

(1987), Wignall & Hallam (1992), Cirilli et al. (1998),
Scholger et al. (2000), Korte & Kozur (2005a, 2010),
Farabegoli et al. (2007), Horacek et al. (2007, 2010),
Posenato (2008), Brandner et al. (2009), Kraus et al.
(2009) and Korte et al. (2010).

The organic carbon isotope values in all three sec-
tions (Fig. 4) deviate from the carbonate d13C trend
(Compare also the D13Ccarb-org curve of Fig. 4. The
variability in d13Corg in that figure is, however, twice
that of d13Ccarb. Thus, its D13Ccarb-org curve mainly re-
flects the characteristics of the d13Corg curve) by a tem-
porary distinctive increase of d13Corg while d13Ccarb val-
ues remain constant or decreasing around the transition
from the Bellerophon Formation to the Werfen Forma-
tion (near the TOH). Carbon isotope fluctuations are
generally reflected in marine carbonates and in marine
phytoplankton because their carbon source, the dis-
solved inorganic carbon (DIC) reservoir, is the same.
The absolute values of the organic matter, however, are
distinctly lighter compared to those of the carbonates
because plants discriminate strongly against 13C. De-
viating organic and inorganic d13C trends can be ex-
plained by ocean anoxia which was widespread in the
latest Permian and evidenced by several successions in
the Tethys and Panthalassa (e.g., Wignall & Hallam
1992; Wignall & Twitchett 1996; Isozaki 1997; Twitch-
ett et al. 2001; Nielsen & Shen 2004; Grice et al. 2005;
Kump et al. 2005; Hays et al. 2007; Algeo et al. 2008,
2012) and may have reached very shallow waters (e.g.,
Kump et al. 2005; Riccardi et al. 2007). Anoxia will af-
fect the sedimentary organic d13C as follows: Under an-
oxic and reducing conditions in the photic zone, green
sulphur bacteria (Chlorobiaceae) can thrive by using
H2S and CO2 for anaerobic photosynthesis. This pro-
cess will not discriminate as much against 12C as
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Figure 4. Time-stratigraphic correlation of the carbonate and organic carbon isotope records and the D13Ccarb-org curve (all ‰ vs
VPDB) of the Seis (Kraus et al. 2009; Siegert et al. 2011), Misci (this study), and San Antonio (this study) sections. Note different
vertical scales in the three sections. Correlation is based on the base of the d13Ccarb positive peak and the low-latitude marine mass
extinction event (= event horizon EH) (see Korte & Kozur 2010; Kozur & Weems 2010). This event is – according to Cirilli et al.
(1998) – situated slightly above their sample S80 at Misci section (chronostratigraphic height in the present study was corrected by
0.38 m because of slight variations in thicknesses of the beds compared to Cirilli et al. 1998). (See Figure 2 for N1, N2 and P).
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photosynthesis of marine phytoplankton in an oxyge-
nated photic zone (Sirevag et al. 1977) and has been
suggested as a cause that d13Ccarb and d13Corg trends at
the PTB deviate temporarily from each other (Riccardi
et al. 2007). The pronounced increase of the organic
carbon isotope values around the TOH in the Southern
Alps, however, occurs at the Misci and San Antonio
section already in the Bulla Member (Figs 2, 3) where
the fully developed benthos in this member indicates
continuously well oxygenated water: thus, this hypoth-
esis is unlikely.

Deviating d13Corg trends can also been caused by
varying proportions of marine organic matter vs. land
plant material. In general, terrestrial plants can (also)
reflect carbon isotopes fluctuations because carbon as
CO2 is continuously exchanged between ocean and at-
mosphere. Although d13C in plants is dominated by
taxonomic, environmental, and diagenetic factors (e.g.,
Gr�cke 1998; Poole et al. 2006) rather than by the iso-
topic composition of atmospheric CO2 alone, studies of
continental organic matter have shown that stratigraphic
signatures are nevertheless recorded, indicating that the
atmospheric signal dominated over local factors (e.g.,
Hasegawa et al. 1997; Gr�cke et al. 1999; Arens et al.
2000; Hesselbo et al. 2007; Nunn et al. 2010; Belcher
et al. 2010; Korte & Hesselbo 2011; Dal Corso et al.
2011). However, Permian wood shows heavier d13C val-
ues than coeval marine-sourced organic matter (Faure
et al. 1995; Foster et al. 1997; Krull 1999; Korte et al.
2001; Ward et al. 2005; Hermann et al. 2010) and thus
affects the bulk d13Corg value of marine sediments be-
cause the TOC in these deposits can be of marine or
terrigenous origin (Whiticar 1996). A change in the
percentage of the marine-to-terrigenous ratio of d13Corg

was probably responsible for the negative carbon-iso-
tope excursion in marine successions in Australia where
a source of predominant woody tissues (d13C ¼
�24 ‰) changed to one dominated by acritarchs
(d13C ¼ –30 ‰) (Gorter et al. 1995; Foster et al. 1997;
see also Thomas et al. 2004). In contrast, heavier d13C
values would be produced by temporarily higher influx
of land plant material in latest Permian seas, sug-
gested for the southern near-shore PTB successions of
the Southern Alps (Siegert et al. 2011). An influx of
land plant material in western Tethys PTB sections at
that time is also supported by palynofacies analyses
(spores, pollen, fungal remains) and isotope ratios of
n-alkanes (d13Calk) reported at Misci (Cirilli et al.
1998; Sephton et al. 2002; Watson et al. 2005), and by
n-alkane d13C at Idrijca Valley (Slovenia), Rizvanuša
and Brezimenjača (both Croatia) (Schwab & Spangen-
berg 2004; Fio et al. 2010). Additional geochemical
data characterising the organic matter in Seis and San
Antonio, however, would likely shed more light on
this issue.

The latest-Permian sediments at the studied sections
represent increasing W-to-E (Seis, Misci, San Antonio)
distances from the palaeocoastline (Figs 1, 4). If the in-
flux of land plant material had indeed impacted the

bulk d13Corg, the organic carbon isotope values should
be lighter in the distal sections because the proportion
of land plant material would be reduced. This hypoth-
esis can be evaluated by comparing data from the three
sections: the lightest d13Corg values prior to the positive
excursions (starting somewhat below the TOH) are –
28.5 ‰, � 30 ‰ and � 31.5 ‰ at Seis, Misci and San
Antonio, respectively (Fig. 4). Similarly, from W to E,
the heaviest values of the positive excursions are
� 25.7 ‰, � 26.5 ‰ and � 27.8 ‰. In addition, the
lightest d13Corg values are � 29 ‰, � 30 ‰, and
� 31 ‰ somewhat above the TOH, and � 29.0 ‰,
� 29.5 ‰, and � 30.5 ‰ in highest part of the investi-
gated sections, each series cited in the same order as
above (Fig. 4); the influence of the heavier isotope is
more pronounced during and after the positive excur-
sion. The data trends show clearly that the marine sedi-
ments at the investigated sections were consistently less
affected by heavier carbon isotopes with increasing dis-
tance from the coastline, a trend which favours a di-
minishing contribution of land plant material. Because
all three sections show the smallest difference in d13C
in the positive d13Corg excursion, the data thus support
the suggestion by Siegert et al. (2011) that the positive
d13Corg excursion in the Southern Alps near the mass
extinction event was mainly produced by a short-lived
enhanced influx of land plant material. However, the
postulated land plant influx was most probably not the
main cause for the positive carbonate carbon isotope
excursion at the low-latitude marine event horizon (cf.
Korte & Kozur 2010) because this d13Ccarb excursion
occurs much later.

What was the reason for such an enhanced influx of
land plant material? Enhanced freshwater influx into
the latest Permian oceans was the logical conveying
mechanism and is documented by changes from domi-
nating bisaccate pollen to trilete cavate spores (Visscher
1971; Balme 1979; Foster 1982; Utting 1994; Kozur
1998a, 1998b; Naugolnykh & Zavialova 2004; Krassi-
lov & Karasev 2009), by increasing precipitation in arid
zones such as in the Germanic Basin (where hypersa-
line sabkha deposits are overlain by fresh-water lake
and fluvial sediments), and/or by and by coarser sedi-
ments and wider channels near the PTB in eastern Aus-
tralia (Michaelsen 2002), South Africa (Ward et al.
2000) and Russia (Newell et al. 1999), all indicating an
increase of stream water power. Intensive rains which
began close to the low-latitude marine event horizon
(Kozur 1998a, 1998b; Krassilov & Karasev 2009; Korte
& Kozur 2011) were linked to enhanced atmospheric
aerosol outgassing from Siberian Trap volcanism by
Kozur (1998a, 1998b) and Korte & Kozur (2011).
Pulses of increased freshwater run-off may also have
formed fresh-water lenses and suppressed water column
overturn near the coastline, facilitating anoxia and aid-
ing the growth of green-sulphur bacteria comparatively
heavy in d13Corg. Alternatively or additionally, the strip-
ping of large volume of dead terrestrial plant cover as a
consequence of environmental disruption would have
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added significantly the d13Corg flux observed in coastal
environments near the PTB.

Conclusion

Organic carbon isotope trends of marine deposits of the
Southern Alps PTB successions at Misci, San Antonio
and Seis deviate by a distinct positive excursion from
the carbonate d13C just postdating the low-latitude ma-
rine event horizon. Spatially, organic carbon isotopes
tend to heavier values with decreasing distance to the
palaeocoastline, suggesting that enhanced continental
influx transporting land plant material affected the bulk
organic d13C of marine sediments, particularly around
the low-latitude mass extinction event. This spike of
land plant-derived OM was likely caused by increased
precipitation and runoff due to volcanic aerosols or by
the ready removal of terrestrial plant material in the
wake of rapid climatic and environmental change.
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