
Stratigraphic significance of carbon isotope variations
in the shallow-marine Seis/Siusi Permian–Triassic boundary
section (Southern Alps, Italy)

Sonja H. Kraus*, 1, Susann Siegert1, Wolfgang Mette2, Ulrich Struck3 and Christoph Korte1

1 Institut f�r Geologische Wissenschaften, Freie Universit�t Berlin, Malteserstr. 74–100, 12249 Berlin, Germany.
E-mail: sonja.kraus@t-online.de

2 Institut f�r Geologie und Pal�ontologie, Universit�t Innsbruck, Innrain 52, 6020 Innsbruck, Austria
3 Museum f�r Naturkunde Berlin, Invalidenstraße 43, 10115 Berlin, Germany

Introduction

The most severe mass extinction of the Phanerozoic af-
fected marine and continental biota in the latest Per-
mian, close to the Permian–Triassic (P–T) boundary
(e.g., Schindewolf 1953; Sepkoski 1989; Raup 1991;
Erwin 2006; Kozur 1998a). This event was accompa-
nied by spectacular global environmental changes, in-
volving significant perturbations of Earth’s carbon cy-
cle expressed as a prominent negative carbon-isotope
excursion (e.g., Chen et al. 1984; Holser & Magaritz
1987; Magaritz et al. 1988; Holser et al. 1989; Ober-
h�nsli et al. 1989; Wang et al. 1994; Morante 1996;
Wignall et al. 1998; Heydari et al. 2000; Krull & Retal-
lack 2000; Krull et al. 2000; Twitchett et al. 2001; Mu-
sashi et al. 2001; Wit et al. 2002; Sephton et al. 2002;
Korte et al. 2004a, 2004b, 2004c, 2005, 2009; Thomas
et al. 2004; Korte & Kozur 2005a, 2005b; Algeo et al.

2007a, 2007b; Coney et al. 2007; Riccardi et al. 2007).
Because of its expression in marine and continental
carbonates and in organic matter, it is generally ac-
cepted that this negative d13C excursion is global in
scale. However, what actually triggered the P–T bound-
ary d13C trend is still under discussion. Several possible
causes, such as Siberian Trap volcanism (e.g., Renne
et al. 1995; Kozur 1998a, 1998b; Svensen et al. 2004;
Hansen 2006; Payne & Kump 2007; Retallack & Jahren
2008; Korte et al. 2009), re-mobilisation of formerly
deposited 13C-depleted organic material due to en-
hanced weathering triggered by sea-level fall (e.g., Hol-
ser & Magaritz 1992), dissociation of isotopically light
methane clathrates (e.g., Erwin 1994; Krull & Retallack
2000; Krull et al. 2000; Twitchett et al. 2001; Wit et al.
2002; Sarkar et al. 2003), a collapse in primary oceanic
productivity (e.g., Visscher et al. 1996; Rampino &
Caldeira 2005), and shallow marine anoxia resulting
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Abstract

Carbonate carbon-isotope values from the Permian–Triassic (P–T) boundary section at
Seis/Siusi (Southern Alps, Italy) show a trend similar to that in numerous other
P–T boundary sections worldwide. Values decrease from 3.2 ‰ (V-PDB) in the upper
Bellerophon Limestone Formation (Late Permian) to a minimum of –1.7 ‰ in the low-
er Mazzin Member. This minimum may represent the P–T boundary. The overall de-
clining carbon-isotope trend is interrupted by a ca. 1 ‰ positive excursion in the higher
Tesero Oolite Horizon. This positive peak is located at a higher lithostratigraphic level
than a comparable peak in the adjacent Pufels section, which suggests that the Tesero
Oolite Horizon in the Seis section is stratigraphically slightly older than in the Pufels
section, and this is also suggested by palaeomagnetic correlation. It is therefore con-
cluded that the base of the Tesero Oolite Horizon does not reflect a synchronous “cur-
rent event” but is slightly diachronous, a result that was previously shown by biostrati-
graphic correlation. Nevertheless, this suggestion should be verified by further detailed
litho-, magneto- and chemostratigraphic analysis of other P–T sections in the Southern
Alps.
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from an upward rise in the chemocline or ocean over-
turn (Malkowski et al. 1989; Korte et al. 2004a; Kump
et al. 2005; Algeo et al. 2007a, 2008) have been sug-
gested. It is most likely that more than one trigger was
responsible for the ––4 to ––7 ‰ negative excursion
(e.g., Renne et al. 1995; Berner 2002; Korte et al.
2004a; Sephton et al. 2005). Factors that might at this
time have affected the global carbon cycle and other
aspects of the Earth system, are discussed extensively
(e.g., Erwin et al. 2002; Benton 2003; Benton &
Twitchett 2003; Kump 2003; Corsetti et al. 2005; Racki
& Wignall 2005; Erwin 2006; Isozaki 2007; Twitchett
2007; Wignall 2007; Korte & Kozur 2009).

Carbon-isotope excursions, if global in scale, are de-
tectable in marine and continental sediments and, be-
cause of the short residence times of carbon in ocean
and atmosphere, can be used for stratigraphic correla-
tion. Here, we present carbon-isotope values for the
shallow-marine Permian–Triassic boundary section at
Seis/Siusi (Southern Alps, Italy). We have used the car-
bon-isotope trend to correlate the Seis section with
other P–T boundary successions of the Southern Alps
and elsewhere. As a result, we propose new strati-
graphic findings for the Seis section that bear on latest
Permian deposition in the Dolomites.

Geological settings and stratigraphic
background

Bulk carbonate samples were collected in September
2007 and June 2008 in a section about 1 km south of Seis
(Siusi) village, Dolomites, Southern Alps, Italy (Fig. 1).
At the end of the Permian this location was situated on
an inner carbonate ramp (No� 1987; Brandner 1988;
Newton et al. 2004) at the westernmost margin of the Pa-
laeotethys, near the equator (Fig. 2). The succession con-
sists of dolomitic mudstones and wackestones of the
upper Bellerophon Limestone Formation (Fig. 3), fol-
lowed upwards by grainstones, mudstones and marls of
the Werfen Formation, including the Tesero Oolite Hori-
zon (TOH), and subsequently by mudstones of the lower
Mazzin Member. The shallow water deposits are charac-
terised by continuous and relatively high sedimentation
rates compared to the classical P–T boundary sections
such as S-China, Iran and Perigondwanan localities (Atu-
dorei 1999; Yin et al. 2001; Kozur 2007). These condi-
tions represent an excellent environment for carbonate
sedimentation (No� 1987) and make high-resolution car-
bon-isotope sampling possible.

The base of the Triassic is defined by the Interna-
tional Commission on Stratigraphy by the first appear-
ance datum (FAD) of the conodont Hindeodus parvus
(Kozur & Pjatakova, 1976). Conodonts are rare in the
Late Permian and Early Triassic succession of the
Southern Alps; thus, it is difficult to define biozones
precisely. However, the occurrence of Hindeodus and
Isarcicella allows a subdivision of the stratigraphic re-

cord into the H. praeparvus Zone, the H. parvus Zone
and the I. isarcica Zone at the Pufels, Tesero and at the
Gartnerkofel core locations (Perri 1991; Sch�nlaub
1991; Farabegoli & Perri 1998; Nicora & Perri 1999;
Korte & Kozur 2005a; Korte et al. 2009).

Formerly, the P–T boundary was lithostratigraphi-
cally placed between the Bellerophon Limestone and
the Werfen Beds at the base of the TOH (e.g., Leonardi
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Figure 1. Map of the studied locality at Seis/Siusi and adjacent
coeval section at Pufels/Bula/Bulla, both Southern Alps, Italy.
Map modified after Brandner (1988).
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Figure 2. Palaeogeographic map of the Late Permian at
260 Ma [modified after Stampfli and Borel (2002) and Korte
et al. (2008)] with sampled region (Southern Alps, Italy: star).
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1967; Bosellini & Hardie 1973), but the FAD of H.
parvus, and with it the P–T boundary, is distinctly
higher and lies within the Mazzin Member (Kozur
1989, 1995, 1996, 1998a, 1998b; Perri 1991; Farabegoli
& Perri 1998; Korte & Kozur 2005a; Korte et al.
2009).

Methods

Powders were drilled from fresh surfaces of bulk carbonates. Samples
of approximately 100–400 mg were filled into clean 10 ml exetainers
and sealed with a septum cap (caps and septa for LABCO exetainer
438b). The remaining air was removed by flushing the exetainer with
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Figure 3. Seis/Siusi section, showing lithology, sample locations, and carbon isotope values for bulk carbonates.
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He (4.6) for 6 min at a flow of 100 ml per minute. Subsequently, about
30 l of anhydrous phosphoric acid was injected through the septum
into the sealed exetainer by using a disposable syringe. The CO2 of
the reacted carbonate was analysed for d18O and d13C on a Thermo
Finnigan GASBENCH II coupled online with a Thermo Finnigan
DELTAV isotope ratio mass spectrometer. Reference gas was meas-
ured using a pure CO2 (4.5) from a cylinder and calibrated against
the V-PDB standard by using IAEA reference materials (NBS 18,
NBS 19). The reproducibility of replicated standards is typically better
than 0.1 ‰ (one standard deviation) for d13C and d18O. Carbon- and
oxygen-isotope values were calibrated against V-PDB and are reported
in the standard ‰-notation (Tab. 1).

Results

Carbon isotope values from homogeneous micritic car-
bonates in the Seis section between the latest Bellero-
phon Limestone Formation and the lower Mazzin Mem-
ber (Fig. 3; Tab. 1) vary between 3.2 and ––1.7 ‰ (V-

PDB). A general trend towards lower d13C values is
discernible upward throughout the investigated section.
This trend is interrupted by a short-term, positive ex-
cursion starting with an amplitude of about 1 ‰ (from
0.9 to 1.8 ‰) about 1 m above the base of the TOH.
This positive excursion occurs over a stratigraphic
thickness of about 1 m; the subsequent decline in d13C
values reaches a minimum of ––1.7 ‰ about 14 m
above the base of the TOH (sample Ksei 68). The two
samples above this minimum show a slight trend to-
wards higher d13C values.

Discussion

The carbon-isotope data from the Seis/Siusi section
show the same feature that was recently proposed as
the “general P–T boundary trend” obtained from nu-
merous P–T boundary sections worldwide (Korte et al.
2009). The decrease of d13C values in this general
trend is evident already in the Late Permian (late
Changhsingian) C. bachmanni Zone, lasted several
100,000 years, and reaches a first minimum at the P–
T boundary. Therefore, in the absence of conodonts, the
lowest value in the d13C curve can be utilized to define
the P–T boundary (Korte & Kozur 2009; Korte et al.
2009). Thus it is possible that the minimum of ––1.7 ‰
at sample Ksei 68 (�14 m above the base of the TOH)
represents the P–T boundary. At the Pufels section, a
similar d13C minimum (––2.7 ‰) occurs at about 12 m
above the base of the TOH (Horacek et al. 2007); this
has been proposed to represent the P–T boundary mini-
mum (Korte et al. 2009) using conodont stratigraphic
ranges from Mostler (1982), Perri (1991), Farabegoli &
Perri (1998), Farabegoli et al. (2007) and Kozur in
Korte et al. (2009). Two factors, however, render the
chemostratigraphic definition of the P–T boundary at
Seis uncertain: (1) the d13C minimum value at Pufels is
more than 1 ‰ lower, and (2) the position of the mini-
mum with respect to the base of the TOH is somewhat
lower at Pufels, although a slightly higher sedimenta-
tion rate for Pufels (in comparison to Seis) can be in-
ferred for the latest Bellerophon Limestone Formation
(Brandner pers. comm. 2009). It is therefore possible
that the P–T boundary at Seis lies slightly lower (or
higher) than the d13C minimum (no data available). On
the other hand, it is still a matter for discussion whether
the TOH is actually diachronous.

Assereto et al. (1973) assumed that the lithologic
change from the Bellerophon Limestone Formation to
the TOH (the previous P–T boundary in the Southern
Alps) is diachronous (see also Wignall & Hallam 1992;
Kozur 1994; Korte & Kozur 2005a). In contrast, Schol-
ger et al. (2000) proposed that the boundary between
the Bellerophon Limestone Formation and the TOH is
an isochronous boundary sensu stricto. The new carbon-
isotope values contribute to this discussion. In several
P–T boundary sections, such as Meishan B (Nan & Liu
2004), Abadeh (Korte et al. 2004a), Shahreza (Korte
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Table 1. Carbon and oxygen isotope values of investigated
samples.

Sample no. d13Ccarb vs V-PDB [%] d18O vs V-SMOW [%]

Ksei 44 3.16 27.26

Ksei 46 3.08 24.75

Ksei 47 2.92 25.55

Ksei 48 2.67 25.40

Ksei 49 1.44 23.73

Ksei 50 1.62 24.25

Ksei 51 1.26 23.46

Ksei 52 0.94 24.61

Ksei 52b 0.95 24.72

Ksei 53 1.42 26.21

Ksei 53a 0.93 24.94

Ksei 53b 1.43 25.74

Ksei 54 1.82 25.13

Ksei 54a 1.83 26.01

Ksei 54b 1.42 26.57

Ksei 54c 1.82 28.09

Ksei 55 1.02 25.24

Ksei 56 0.45 26.44

Ksei 57 0.55 25.87

Ksei 58 0.51 25.17

Ksei 59 0.66 25.90

Ksei 60 0.16 27.42

Ksei 61 0.29 25.35

Ksei 62 0.16 25.22

Ksei 63 ––0.83 26.78

Ksei 64 ––1.17 25.63

Ksei 65 ––0.94 24.96

Ksei 66 ––1.09 24.58

Ksei 67 ––1.37 25.86

Ksei 68 ––1.65 25.15

Ksei 69 ––0.71 28.52

Ksei 70 ––0.96 26.55
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et al. 2004b), Zal (Korte et al. 2004c), Gartnerkofel core
(Holser et al. 1989) or Guryul Ravine (Korte et al.
2009), the latest Permian decreasing d13C trend is inter-
rupted by a positive excursion of about 1 ‰ magnitude
starting somewhat below or at the main extinction event
(¼ event horizon). This short-term positive trend is also
recognisable in the d13C values from Seis between sam-
ples 53a and 56 (Fig. 3). Because of this similarity we
believe that this 1 ‰ positive carbon isotope excursion
may be global in extent. This chemostratigraphic marker
may therefore be excellently suited for stratigraphic cor-
relation within the interval of interest. A comparison of
the carbon isotope curves of the Seis section (this study)
and at Pufels (Korte & Kozur 2005a), as well as the
lithology and magnetic polarity (the later published by
Scholger et al. 2000), indicates that the short-term posi-
tive excursion at Seis (Fig. 4) starts about 0.8 m above
the base of the TOH (Fig. 4) at sample 53a (Fig. 3). In
contrast, the same positive excursion starts at Pufels
(not expressed by Gorjan et al. 2008) right after the first
oolite bed about 0.2 m above the base of the TOH.
These results indicate that the TOH at Seis was depos-
ited slightly earlier than at Pufels. This finding is the
more remarkable because the compared sections are less
than 10 km apart from each other (Fig. 1). The result
would also imply that the TOH is a regressive unit since
the litho- and biofacies at the Seis section reflect a shal-
lower water depth than the more easterly Pufels section.
During this regression, the distal localities in the east
were characterized by later occurrence of shallow-water
oolite facies than the sections in the west, which were
situated closer to the palaeocoast (Fig. 1). These sugges-
tions confirm biostratigraphic results by Kozur (1994).
However, further chemo- and magnetostratigraphic stu-
dies of southern alpine P–T boundary sections are de-
sirable to verify these results.

It has been proposed that the oolites were not the re-
sult of a transgression or regression, but accumulated
due to sudden climate and/or oceanography changes
(“current event”, see Brandner 1988; Brandner et al.
2008). The marly layer about 0.3 m above the base of
the TOH at Seis (Figs 4 and 5) may represent the marly
layer at about 0.2 m above the base of the TOH at Pu-
fels (Fig. 4) (Brandner pers. comm. 2009). If this is the
case, the temporal difference in the deposition of the
oolites between Seis and Pufels may not be resolvable
because of the deposition of these beds must be con-
temporaneous. This explanation, however, cannot be
confirmed by the carbon-isotope data because the
short-term positive excursion is distinctly higher in Seis
than in Pufels.

The main extinction event in the latest Permian, re-
cognisable in several P–T boundary sections (e.g.,
Meishan, China: Yin et al. 2001; Abadeh, Jolfa, Shahre-
za, Zal, all Iran: Kozur 2007), occurs abruptly at the
base of the C. meishanensis – H. praeparvus Zone, a
stratigraphic level coeval with the base of the Boundary
Clay. It is difficult to define this (equivalent) biostrati-
graphic base at the Seis section and, in addition, the
Boundary Clay is not developed because of the shallow
water. At the Pufels section, the biotas were seriously
affected near the base of the TOH (Farabegoli et al.
2007) and the same can be observed at the Seis section.
It is, however, most likely that the biota at Pufels and
Seis disappeared because of the onset of high energy
conditions in shallow water with formation of compact
oolites at both locations. Similar facies changes also
cause strong local biotic change within the Permian and
Triassic. The real main extinction event was certainly
not situated at the base of the TOH, but within the Wer-
fen Beds. This can be stated because fusulinids and
Permian holothurian sclerites do not occur elsewhere
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above the main extinction event, but are present within
the TOH (Kozur 1994). The disappearance of biota
near the base of the TOH at Seis and Pufels therefore
does not chronostratigraphically correspond to the event
horizon of the Chinese or Iran sections.

Palaeomagnetic data (Scholger et al. 2000) can also
be used for correlation. These show that a short palaeo-
magnetic reversed interval is followed by a long normal
interval that straddles the P–T boundary (Fig. 4). This
polarity-change is biostratigraphically defined in other
sections and occurs in the Germanic Basin (Szurlies
2004; Bachmann & Kozur 2004) somewhat below the
main extinction event in the Tethys. The palaeomag-
netic data of Scholger et al. (2000) for Seis and Pufels
also suggest a diachronous boundary between the Bel-
lerophon Limestone Formation and the TOH (Fig. 4).
At the Seis section, the change from reversed to normal
polarity occurs either within the upper TOH, distinctly
above the top of the Bellerophon Limestone Formation
or, maybe, even within the lower Mazzin Member (but
note that Newton et al. (2004) drew the boundary be-
tween TOH and the Mazzin Member distinctly higher
than Scholger et al. (2000); see Fig. 4). At the Pufels
section, this change in polarity occurs close to the base
of the TOH (first normal magnetised sample 5 cm
above the base of the TOH). These results confirm the
interpretation of the carbon-isotope values and suggest
that the boundary between the Bellerophon Limestone

Formation and the TOH is diachronous and the lower
part of the TOH at Seis corresponds to the latest Bel-
lerophon Limestone Formation at Pufels.

Conclusion

The latest Permian short-term positive carbon-isotope
excursion at the Seis section is situated lithostratigra-
phically higher than at the adjacent Pufels section. This
suggests that the Tesero Oolite Horizon in the Seis sec-
tion is older than in Pufels, suggesting in turn that the
Bellerophon Limestone Formation – TOH boundary is
diachronous.
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